本白皮书版权属于北京金融信息化研究所有限责任公司,并 受法律保护。转载、编摘或利用其他方式使用本白皮书文字或观 点的,应注明来源。违反上述声明者,将被追究相关法律责任。 主 任: 潘润红 副主任: 黄程林、庄文君 编委会成员(排名不分先后,按姓氏拼音排序): 陈起、方兴、龚光庆、黄登玺、寇冠、 李晓敦、李肇宁、万化、 王超、王健宗、王铿、王磊(太保)、王磊(蚂蚁) 、王平、巫锡 斌、吴择金、许宝东、应志伟、俞枫、喻华丽、詹志辉、赵焕芳 编写组成员(排名不分先后,按姓氏拼音排序): 鲍力成、陈晨、董琦、冯浩、傅杰、高海隆、高靓、葛明嵩、胡 祎然、黄小芮、黄章成、孔宇飞、李成、李泽远、梁腾文、廖旺 胜、刘剑、刘静、钱江、盛沛、时煜坤、史春奇、陶建萍、万琳、 王锋、王光中、王秋卉、王雪黎、邬佳伟、吴鑫涛、武竞、徐崚 峰、薛祥杰、叶茂城、赵可、郑植、周建平、朱明杰 执笔人(排名不分先后,按姓氏拼音排序): 鲍思佳、王帅强 主编单位: 北京金融信息化研究所 中国工商银行股份有限公司 中信银行股份有限公司 中国光大银行股份有限公司 上海浦东发展银行股份有限公司 平安科技(深圳)有限公司 蚂蚁科技集团股份有限公司 参编单位: 中国农业银行股份有限公司 中国银行股份有限公司 中国建设银行股份有限公司 交通银行股份有限公司 招商银行股份有限公司 兴业银行股份有限公司 兴业数字金融服务(上海)股份有限公司 深圳证券交易所 国泰君安证券股份有限公司 中信证券股份有限公司 中国人寿财产保险股份有限公司 中国太平洋保险(集团)股份有限公司 泰康保险集团股份有限公司 海光信息技术股份有限公司 蓝象智联(杭州)科技有限公司 杭州金智塔科技有限公司 数字经济时代,数据已成为关键生产要素,具有重要战略资 源地位和核心科学决策作用。在数据融合计算需求激增和数据安 全保护趋严的背景下,隐私计算技术作为保障数据融合使用过程 中数据隐私安全的有效技术手段,成为金融数据流通领域的主要 探索方向。金融机构已经从产业侧、应用侧和产学研用生态三个 维度开展隐私计算技术在技术发展、平台建设、场景实践、检测 认证等方面的应用探索。随着隐私技术应用领域不断拓展,实际 应用中出现了融合多项技术的组合方案,更好地满足多样化业务 需求。 隐私计算技术在金融业应用还处于初期探索和应用试点阶 段,仍面临法律合规风险高、公共基础设施不完善、示范效应和 规模化应用场景欠缺、赋能金融业务不明显、异构平台互联互通 难等诸多挑战,亟需完善隐私计算金融应用合规指南,提升技术 性能和标准化服务水平,建立科学合理的安全性度量体系,鼓励 大型金融机构对外输出互联互通能力,共享行业应用实践与先进 经验,切实提升金融业隐私计算应用安全水平。 一、概述 ....................................................................................................................... 1 二、隐私计算技术发展现状 ....................................................................................... 2 (一)多种技术繁荣发展 ........................................ 2 (二)技术融合发展与应用 ...................................... 4 (三)隐私计算安全验证方式及主流平台 .......................... 6 三、金融机构积极探索隐私计算的应用与实践 ..................................................... 15 (一)逐步开展隐私计算平台建设 ............................... 16 (二)通过隐私计算融合不同渠道的数据 ......................... 18 (三)不断探索隐私计算应用场景 ............................... 21 四、隐私计算金融应用生态不断完善 ..................................................................... 25 (一)推进异构平台互联互通,避免形成“计算孤岛” ............. 25 (二)技术与数据协同引入,快速实现外部数据链接 ............... 28 (三)开展标准检测认证,保障隐私计算金融应用安全 ............. 29 五、隐私计算在金融业应用面临的风险与挑战 ..................................................... 30 (一)金融应用面临合规风险 ................................... 30 (二)技术与产品性能和安全性亟需提升 ......................... 32 (三)金融应用基础设施有待完善 ............................... 35 (四)示范效应和规模化应用场景欠缺 ........................... 37 (五)异构平台互联互通仍存在障碍 ............................. 38 六、多措并举推动隐私计算在金融业合理合规地应用 ......................................... 39 (一)强化隐私计算金融应用的顶层设计 ......................... 40 (二)以应用促进隐私计算技术与产品性能和安全性提升 ........... 41 (三)探索建立金融业共享共用的隐私计算基础设施 ............... 42 (四)积极推广试点示范与可规模化应用的场景 ................... 43 (五)大力推动隐私计算异构平台的互联互通 ..................... 43 风险防控一:隐私计算应用企业评分授信 ......................... 45 风险防控二:基于多方安全数据分析平台的金融反诈应用 ........... 48 风险防控三:基于纵向联邦学习技术建立个人信贷风控模型 ......... 52 风险防控四:基于多方安全知识图谱计算的中小微企业融资服务 ..... 54 风险防控五:基于多方安全计算的图像隐私保护 ................... 56 风险防控六:基于隐私计算实现集团内反洗钱名单数据共享 ......... 59 风险防控七:基于区块链的行业黑名单共享研究与应用实践 ......... 62 风险防控八:长尾客户小额信贷场景的多方安全计算信用风险预测 ... 71 风险防控九:基于多方安全计算的全链路联合风控助力普惠金融 ..... 74 风险防控十:基于隐私计算的金融反欺诈联防联控平台 ............. 79 风险防控十一:基于隐私计算的小微商户普惠金融服务 ............. 85 风险防控十二:隐私计算安全融合政务数据赋能银行智能风控实践 ... 89 精准营销一:隐私计算技术在集团内的数据安全保护实践 .......... 101 精准营销二:基于隐私计算技术的第三方支付机构营销推荐 ........ 104 精准营销三:基于多方安全计算平台实现高净值客户价值倍增 ...... 106 精准营销四:基于隐私计算的银行保险用户联合营销 .............. 107 精准营销五:基于隐私计算的精准营销获客 ...................... 109 产品创新与其他一:基于隐私计算和区块链的财富管理精准服务 .... 112 产品创新与其他二:基于隐私计算的内外部数据融合研究与应用 .... 117 产品创新与其他三:泛金融之理赔调查场景中多方安全分析的应用 .. 123 图表 1 “隐语”框架分层总览 ................................... 9 图表 2 PrivPy 多方安全计算平台功能架构总览 .................... 12 图表 3 GAIA 产品架构图 ........................................ 13 图表 4 金智塔框架分层总览 .................................... 15 图表 5 白盒组件示意图 ........................................ 27 图表 6 黑盒组件示意图 ........................................ 28 在数字经济时代,数据作为最活跃的生产要素,已经全面融 入经济价值创造,对生产力发展、生产关系变化产生深远影响。 近年来,国家深入布局数字经济战略,加快培育数据要素市场, 数字经济规模逐年增加。 《 “十四五”数字经济发展规划》提出“数 据要素是数字经济深化发展的核心引擎,要建立数据要素市场体 系,充分发挥数据要素作用,加快数据要素市场化流通” 。 《关于 构建数据基础制度更好发挥数据要素作用的意见》指出“完善数 据要素市场化配置机制,扩大数据要素市场化配置范围和按价值 贡献参与分配渠道”。数据要素进入价值创造的新阶段,数据流 通中的数据安全和隐私保护问题日益凸显。随着《数据安全法》 《个人信息保护法》《征信业务管理办法》等法律法规和管理办 法落地实施,数据合规与隐私保护已成为企业的一项重要任务。 金融业是数据密集型行业,具有丰富多样的业务场景。数据 要素流通为金融数字化转型带来全新机遇。在数据融合计算需求 激增和数据安全保护趋严的背景下,隐私计算技术作为保障数据 融合使用过程中数据隐私安全的有效技术手段,成为金融数据流 通领域的主要探索方向。 《金融科技发展规划(2022-2025 年)》 提出“要积极应用多方安全计算、联邦学习、差分隐私、联盟链 等技术,探索建立跨主体数据安全共享隐私计算平台,在保障原 1 始数据不出域前提下规范开展数据共享应用”,为金融机构利用 隐私计算技术实现数据共享提供了方向和指引,推动金融机构在 隐私计算领域的布局和应用。 数据作为生产要素,流通的不是数据本身,而是其计算价值。 随着数据流通和数据隐私保护并重的产业需求愈发旺盛,隐私计 算技术或将成为数据要素化时代的关键技术,推动传统数据合作 模式变革,保障数据流通安全

pdf文档 51 《隐私计算金融应用白皮书(2022)》

安全研究库 > 技术研究报告 > 技术研究报告 > 文档预览
135 页 0 下载 16 浏览 0 评论 0 收藏 3.0分
温馨提示:如果当前文档出现乱码或未能正常浏览,请先下载原文档进行浏览。
51 《隐私计算金融应用白皮书(2022)》 第 1 页 51 《隐私计算金融应用白皮书(2022)》 第 2 页 51 《隐私计算金融应用白皮书(2022)》 第 3 页 51 《隐私计算金融应用白皮书(2022)》 第 4 页 51 《隐私计算金融应用白皮书(2022)》 第 5 页
下载文档到电脑,方便使用
还有 130 页可预览,继续阅读
本文档由 周晴2024-01-09 09:30:48上传分享
给文档打分
您好可以输入 255 个字符
安信天行文库的中文名是什么?( 答案:安信天行 )
评论列表
  • 暂时还没有评论,期待您的金玉良言